- 1. Lineare Verzinsung
- 1.1 Endwert K_n einer Einmalanlage K₀ bei linearer ganzjähriger Verzinsung nach n Jahren

$$K_n = K_0 \left(1 + \frac{p}{100} \cdot n \right) = K_0 (1 + i \cdot n)$$

1.2 Endwert K_m bei unterjähriger linearer Verzinsung nach m Zinstagen

$$K_m = K_0(1 + i \cdot \frac{m}{Jahreslänge in Tagen})$$

1.3 Zinsstaffelrechnung

$$Zinsen = \frac{Zinszahl}{Zinsdivisor} = \frac{\#}{ZD}$$
$$\# = \frac{K \cdot Zinstage}{100}$$
$$ZD = \frac{360}{p}$$

- 1.4 Endwert von m Rentenzahlungen nach 1 Jahr bei linearer Verzinsung
- 1.4.1 bei vorschüssiger Zahlung

$$K_1 = R\left(m + \frac{m+1}{2} \cdot i\right)$$

1.4.2 bei nachschüssiger Zahlung

$$K_1 = R\left(m + \frac{m-1}{2} \cdot i\right)$$

- 2. Exponentielle Verzinsung im Zwei-Punkte-Fall
- 2.1 Endwert K_n eines Anfangskapitals K_0 nach n Verzinsungsperioden

$$K_n = K_0 \left(1 + \frac{p}{100}\right)^n = K_0 (1 + i)^n = K_0 q^n$$

2.2 Unterjährige Zinseszinsrechnung

Wenn ein Anfangskapital K_0 im Verlaufe des Jahres m-mal mit dem Periodenzinssatz j_m verzinst wird, dann gilt für den Zusammenhang zwischen dem Periodenzinssatz j_m , dem Jahreszinssatz i, dem Anfangskapital K_0 und dem Endkapital nach 1 Jahr K_1

$$K_0(1+j_m)^m = K_1 = K_0(1+i)$$

woraus folgt $(1 + i_m)^m = 1 + i$

2.2.1 Endwert K_{nm}, wenn ein Anfangskapital K₀ über n Jahre verzinst wird und innerhalb jeden Jahres m-mal mit dem Periodenzinssatz j_m:

$$K_{nm} = K_0 (1 + j_m)^{n \cdot m}$$

In kaufmännischen Anwendungen wird der unterjährige Periodenzinssatz häufig zeitproportional aus dem nominellen Jahreszinssatz i_{nom} abgeleitet. Wenn das Laufzeitjahr aus m gleichlangen unterjährigen Zinsperioden besteht ergibt sich so der relative Periodenzinssatz j_{rel}

$$j_{rel} = \frac{i_{nom}}{m}$$

2.2.2 Ableitung des effektiven Jahreszinssatzes i_{eff} aus dem nominellen Jahreszinssatz i_{nom} bei unterjähriger Verzinsung mit dem relativen Periodenzinssatz j_{rel}

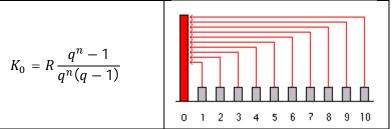
$$i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m - 1$$

 $2.2.3 \ Ermittlung \ des \ zum \ Jahreszinssatz \ i \ konformen \ Periodenzinssatzes \ j_{konf}$

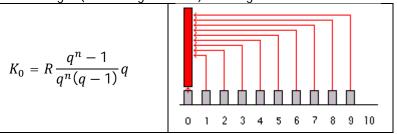
$$j_{konf} = \sqrt[m]{1+i} - 1$$

Formelsammlung Finanzmathematik

- 3. Rentenrechnung (exponentiell)
- 3.1 Rentenbarwert (heutiger Wert von n künftigen Rentenzahlungen R)
- 3.1.1 bei nachschüssiger (eine Periode nach heute beginnender) Zahlung

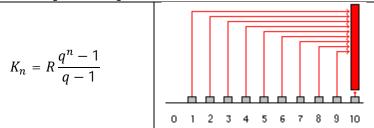


3.1.2 bei vorschüssiger (heute beginnender) Zahlung



3.2 Rentenendwert (Endwert von n Rentenzahlungen R)

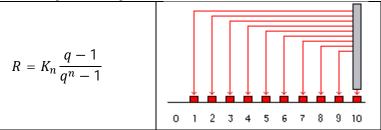
3.2.1 bei nachschüssiger Zahlung



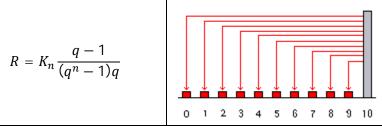
3.2.2 bei vorschüssiger Zahlung $K_n = R \frac{q^n - 1}{q - 1} q$

3.3 Umwandlung einer endfälligen Zahlung K_n in n Rentenzahlungen R mit Hilfe des Restwertverteilungsfaktors

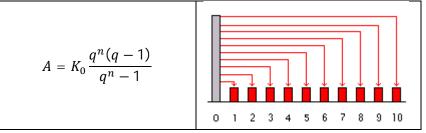
3.3.1 bei nachschüssiger Zahlung



3.3.2 bei vorschüssiger Zahlung



3.4 Umrechnung einer heutigen Zahlung K_0 in n konstante gleichwertige künftige Zahlungen (Annuitäten A)



4. Rechnerische lineare Interpolation zur näherungsweisen Ermittlung der Nullstelle der Kapitalwertfunktion

$$p_{eff} = p_1 - C_{01} \frac{p_2 - p_1}{C_{02} - C_{01}}$$

mit peff ... interner Zinsfuß

 P_1 und p_2 die gewählten Versuchszinssätze C_{01} und C_{02} die dazugehörigen Kapitalwerte

4. Tilgungsrechnung

<u>Standardfall eines Annuitätendarlehens</u>:

- Zinsperiode = Zahlungsperiode
- Gläubigerleistung = Kreditsumme K₀
- Schuldnerleistung = gleichhohe Annuitäten A, beginnend eine Periode nach Kreditauszahlung (nachschüssige Zahlung)

Für den Standardfall gelten die folgenden Beziehungen:	
Annuität $A = K_0 \cdot \frac{q^n \cdot (q-1)}{q^n - 1}$	Laufzeit (Anzahl der Annuitäten) bis zur vollständigen Tilgung $n = \frac{\log \frac{A}{A - K_0 \cdot (q-1)}}{\log q} = \frac{\log A - \log (A - K_0 \cdot (q-1))}{\log q}$ oder
Kaufmännische Berechnung der Annuität ("Prozentannuität"): jährlicher Kapitaldienst $= Darlehensbetrag \cdot (Zinssatz + Tilgungssatz)$ Ratenhöhe bei unterjähriger Zahlweise $Rate = Darlehensbetrag \cdot \frac{Zinssatz + Tilgungssatz}{Anzahl \ Raten \ pro \ Jahr}$	$n=rac{\lograc{i+i_T}{i_T}}{\log q}=rac{\log(i+i_T)-\log i_T}{\log q}$ mit i = Zinssatz und i $_{ m T}$ = Tilgungssatz $i_T=rac{A-K_0\cdot i}{K_0}$
Restschuld K _m nach m Ratenzahlungen $K_m = K_0 \cdot q^m - A \cdot \frac{q^m - 1}{q - 1}$	Abweichende Höhe der letzten Rate bei nicht ganzzahliger Annuitätenzahl: 1. Schritt: Ermittlung der Restschuld nach Zahlung der letzten vollen Annuität. 2. Schritt: Restschuld nach Zahlung der letzten vollen Annuität

+ Zinsen auf diese Restschuld

= Höhe der letzten abweichenden Rate